15ELN15/25

First/Second Semester B.E. Degree Examination, July/August 2021 Basic Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions.

- 1 a. Draw and explain the V I characteristics of Si diode and Ge diode. (06 Marks)
 - b. With neat circuit diagram, explain the working principles of full wave bridge rectifier.

 (06 Marks)
 - c. Calculate I_C and I_E for a transistor that has $\alpha_\mu = 0.98$ and $I_B = 100 \mu A$ and also determine the value of β_{dc} for the transistor. (04 Marks)
- 2 a. Distinguish between Avalanche break down and Zener break down. (04 Marks)
 - b. A half wave rectifier uses a diode whose Internal resistance is 30Ω to supply power to $1.1k\Omega$ load from 110V (rms) source of supply. Calculate i) DC Load Voltage ii) DC Load Current iii) AC Load Current iv) Efficiency of the rectifier. (06 Marks)
 - c. Draw and explain the input and output characteristics of a transistor in common emitter configuration. (06 Marks)
- 3 a. For the base bias circuit V_{CC} = 18V , R_C = 2.2K Ω , R_B = 470 K Ω , β 100 and V_{BE} = 0.7V. Find I_B , I_C and V_{CE} .
 - b. Explain the Ideal Op Amp characteristics. (04 Marks)
 - c. Show how an Op-amp can be used as an differentiator. Derive expression for output voltage.

 (06 Marks)
- 4 a. Explain Voltage divider bias circuit, with neat circuit diagram. (05 Marks)
 - b. With a neat circuit diagram and waveform, explain how Op-amp can be used as a Inverting amplifier. (06 Marks)
 - c. Determine the output voltage of the following circuit.

Fig. Q4(c)

(05 Marks)

- 5 a. Convert i) $(59)_{10} = (?)_2$ ii) $(10000101)_2 = (?)_{10}$ iii) $(AEF5)_{16} = (?)_2$ iv) $(1543)_8 = (?)_{10}$. (06 Marks)
 - b. Realize the i) OR ii) AND iii) NOT gates using NAND and NOR gate only.

(06 Marks) (04 Marks)

c. Design a half adder circuit and realize using Basic gates.

6 a. Factorize the following Boolean equations:

n (1991) in Marinia (1991) in

- i) $Y = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} D + A \overline{B} \overline{C} \overline{D} + A \overline{B} \overline{C} D$.
- ii) $Y = ABC + A\overline{B}C + AB\overline{C} + \overline{A}BC$.

(06 Marks)

b. Perform (22 17) using 1's and 2's Complement method.

(04 Marks)

c. Draw and explain the Full adder circuit.

(06 Marks)

7 a. What is Flip – Flop? Explain the operation of NAND – gate latch with its truth table.

(04 Marks)

b. With neat diagram, explain the architecture of 8051 micro controller.

(06 Marks)

c. Explain the working of clocked R - S Flip – flop with logic diagram and truth table.

(06 Marks)

- 8 a. Explain R S Flip Flop using its circuit diagram, logic symbol the truth table. (06 Marks)
 - (06 Marks)
 - b. Explain with neat diagram, Microcontroller based stepper motor control system. c. Identify the value of Q and \overline{Q} for the Fig. Q8(c), when i) R = S = 0 ii) R
 - i) R S 1

iii) R = 0, S = 1 and iv) R = 1, S = 0.

(04 Marks)

Fig.Q8(c)

- 9 a. Explain the elements of Communication system, with a neat block diagram. (06 Marks)
 - b. What is Modulation? Derive the expression for Amplitude Modulation. (06 Marks)
 - c. What is Transducer? Differentiate between Active and Passive transducer.
- 10 a. A 500W, 1MHz carrier is amplitude modulated with a Sinusoidal signal of 1KHz. The depth of modulation is 60%. Calculate the i) Bowl width ii) Power in the sidebands and iii) The total power transmitted. (06 Marks)
 - iii) The total power transmitted. (06)
 b. Explain the working of LVDT, with neat diagram. (05)
 - c. Explain the differences between Amplitude and Frequency modulation.

(05 Marks)

(04 Marks)

(05 Marks)

* * * * *